首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2423篇
  免费   384篇
  国内免费   326篇
测绘学   155篇
大气科学   322篇
地球物理   663篇
地质学   814篇
海洋学   244篇
天文学   29篇
综合类   162篇
自然地理   744篇
  2024年   2篇
  2023年   28篇
  2022年   63篇
  2021年   101篇
  2020年   87篇
  2019年   82篇
  2018年   77篇
  2017年   111篇
  2016年   99篇
  2015年   133篇
  2014年   122篇
  2013年   209篇
  2012年   139篇
  2011年   146篇
  2010年   110篇
  2009年   115篇
  2008年   145篇
  2007年   166篇
  2006年   165篇
  2005年   133篇
  2004年   110篇
  2003年   92篇
  2002年   81篇
  2001年   88篇
  2000年   79篇
  1999年   83篇
  1998年   64篇
  1997年   58篇
  1996年   40篇
  1995年   25篇
  1994年   45篇
  1993年   23篇
  1992年   25篇
  1991年   22篇
  1990年   11篇
  1989年   9篇
  1988年   15篇
  1987年   4篇
  1986年   2篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   7篇
  1977年   1篇
  1973年   2篇
排序方式: 共有3133条查询结果,搜索用时 31 毫秒
91.
Tritium concentrations were measured in a survey of 24 lakes, 15 wetlands, and 133 groundwaters in the oil sands region of northeastern Alberta and compared with both recent precipitation and precipitation sampled during the 1960s tritium peak caused by atmospheric thermonuclear weapons testing. Water samples from lakes included a group of 14 thaw lakes that had higher runoff attributed to melting of permafrost in peat plateaus within their watersheds. While tritium in all lakes was found to be intermediate between recent and 1960s concentrations, the thaw lakes were found to be significantly enriched in tritium compared with other lakes, as were unfrozen wetlands characterized by a thick sequence of low‐hydraulic conductivity peat. The results provide further evidence of different water sources to the thaw lakes and may indicate that melting of modern permafrost in part formed since the 1950s is occurring in these systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
92.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
93.
为解决森林分布不连续流域森林水源涵养功能及其多时间尺度特征的定量评价问题,根据分布式水文模型(SWAT)的特点,提出了反映森林斑块空间分布的水文响应单元划分方法,以及基于水量平衡法的森林不连续分布流域森林水源涵养量计算公式。以东南沿海的晋江流域为例,构建了2006年土地利用条件下的日时间步长SWAT模型,统计分析了2002—2010年降水条件下森林水源涵养量的时空变化规律。结果表明:① 构建的晋江流域SWAT模型精度较高,面积阈值为零生成的水文响应单元比较准确地反映流域森林斑块分布,提出的森林水源涵养量计算公式适用于森林空间分布不连续流域森林水源涵养量的多时间尺度分析,为流域森林水源涵养功能评价提供了一个新的方法。② 晋江流域森林水源年涵养量271.41~565.25 mm;月涵养量-29.15~154.59 mm;日尺度的极端降水期皆为正值,极端枯水期都为负值。表明年际之间不存在森林水源涵养的蓄丰补枯调节作用,但在年内的部分月份得到体现,而日尺度的森林蓄丰补枯功能充分发挥。从而揭示了不同时间尺度森林水源涵养量及其蓄丰补枯功能的差异。  相似文献   
94.
The Budyko framework characterizes landscape water cycles as a function of climate. We used this framework to identify regions with contrasting hydroclimatic change during the past 50 years in Sweden. This analysis revealed three distinct regions: the mountains, the forests, and the areas with agriculture. Each region responded markedly different to recent climate and anthropogenic changes, and within each region, we identified the most sensitive subregions. These results highlight the need for regional differentiation in climate change adaptation strategies to protect vulnerable ecosystems and freshwater resources. Further, the Budyko curve moved systematically towards its water and energy limits, indicating augmentation of the water cycle driven by changing vegetation, climate and human interactions. This finding challenges the steady state assumption of the Budyko curve and therefore its ability to predict future water cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
95.
文章结合国家有关海洋生态文明建设的要求和澳门海域实际情况,分析海域对于澳门经济社会发展的重要意义,明确“十四五”时期海洋生态环境保护的应对策略,包括:强化海洋空间管控,构建绿色发展格局;开展岸线整治修复,实施生态恢复工程;维护滨海湿地功能,推动海湾综合治理;建设旅游基础设施,发展海洋旅游市场;实施污染联防联控,有效推动公众参与。同时,结合澳门实际情况,提出中长期海洋生态环境保护策略,助力澳门在新时代“粤港澳大湾区”和“一带一路”建设中发挥更大作用。  相似文献   
96.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   
97.
This paper examines the spatial characteristics of farmer/household behaviors in regional rice cropping systems (RCS), and the results provide necessary information for developing strategies that will maintain regional food security. Through field study and statistical analysis based on 402 households questionnaires finished in 2014-2015 in the Poyang Lake Region (PLR) of China, we arrived at two main conclusions. First, single- and double cropping rice were found across the study area, but showed a general distribution trend, with double cropping rice in the southeast part (especially in Jinxian county) and single cropping rice in the northwest (particularly in De’an county). Second, the household decisions concerning RCS varied in different parts of the PLR, but double cropping was the dominant type, with about 63.57% of the respondent households in the PLR cultivating double cropping rice. However, the multiple-cropping index of paddy rice was only 1.55. About 3% of interviewed households had altered their RCS during this period. Based on these findings, the local governments should guide farmers’ paddy field cultivation behaviors by increasing the comparative efficiency of rice production, promoting appropriate scale operations and land conversion, as well as optimizing rice growing conditions to improve the multiple cropping index and enhance food provision. Finally, land-use efficiency and more sustainable use of land resources should be improved.  相似文献   
98.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   
99.
Previous studies have shown that shallow groundwater in arid regions is often not in equilibrium with near‐surface boundary conditions due to human activities and climate change. This is especially the case where the unsaturated zone is thick and recharge rate is limited. Under this nonequilibrium condition, the unsaturated zone solute profile plays an important role in estimating recent diffuse recharge in arid environments. This paper combines evaluation of the thick unsaturated zone with the saturated zone to investigate the groundwater recharge of a grassland in the arid western Ordos Basin, NW China, using the soil chloride profiles and multiple tracers (2H, 18O, 13C, 14C, and water chemistry) of groundwater. Whereas conventional water balance and Darcy flux measurements usually involve large errors in recharge estimations for arid areas, chloride mass balance has been widely and generally successfully used. The results show that the present diffuse recharge beneath the grassland is 0.11–0.32 mm/year, based on the chloride mass balance of seven soil profiles. The chloride accumulation age is approximately 2,500 years at a depth of 13 m in the unsaturated zone. The average Cl content in soil moisture in the upper 13 m of the unsaturated zone ranges from 2,842 to 7,856 mg/L, whereas the shallow groundwater Cl content ranges from 95 to 351 mg/L. The corrected 14C age of shallow groundwater ranges from 4,327 to 29,708 years. Stable isotopes show that the shallow groundwater is unrelated to modern precipitation. The shallow groundwater was recharged during the cold and wet phases of the Late Pleistocene and Holocene humid phase based on palaeoclimate, and consequently, the groundwater resources are nonrenewable. Due to the limited recharge rate and thick unsaturated zone, the present shallow groundwater has not been in hydraulic equilibrium with near‐surface boundary conditions in the past 2,500 years.  相似文献   
100.
Slope stability optimization, in the presence of a band of a weak layer between two strong layers, is accounted for in complicated geotechnical problems. Classical optimization algorithms are not suitable for solving such problems as they need a proper preliminary solution to converge to a valid result. Therefore, it is necessary to find a proper algorithm which is capable of finding the best global solution. Recently a lot of metaheuristic algorithms have been proposed which are able to evade local minima effectively. In this study four evolutionary algorithms, including well‐known and recent ones, such as genetic algorithm, differential evolution, evolutionary strategy and biogeography‐based optimization (BBO), are applied in slope stability analysis and their efficiencies are explored by three benchmark case studies. Result show BBO is the most efficient among these evolutionary algorithms and other proposed algorithms applied to this problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号